BIORESOURCE TECHNOLOGY (ChBC-82) B.Tech. 8TH Semester

	<u>B.1ecn. 8 Semester</u>											
S. No.	Question			<u>.</u>	2 4		-					COs
1.	Discuss biomass combustion fundamentals along with the basic chemic involved with the help of a flow diagram showing two-stage combustion											CO3
						gram s	howing	g two-s	stage of	combu	stion of biomass	
	with primary and secondary air.											
2.	What are different pollutants generated during biomass combustion? How unburnt pollutants, NOx and particulate emissions be checked? Discuss the cor											CO 1
									cked?	Discu	ss the conversion	
	of fuel nitrogen into NOx with the help of a diagram.											
3.	Why is the global interest increasing towards application of biomass for generation of											CO2
	energy? How can the combustion technology be useful in this direction?											CO3
4.	Discuss the working principle of stationary fluidized bed combustor with staged											CO3
	combustion (Lurgi) with the help of a diagram.											
5.	Describe the various biomass combustion technologies available in the market for											CO3
	generation of energy Also discuss their merits and demerits.											
6.	Explain co-combustion. Why is there growing interest in co-combustion of biomass?											CO3
7.	Discuss the recent trends in biomass combustion technology.											
8.	Write a brief note on opportunities and challenges in combustion technology using											
	biomass as a feedstock for generation of energy.											
9.	A bioresource (biomass) which contains carbon, hydrogen, nitrogen, oxygen, sulfur											CO4
	and extractives in ultimate analysis is used for generation of heat energy by combustion. Applying the basic stoichiometric equations and making the material balance, develop a general mathematical correlation for minimum quantity of air											
	required for combustion of 1 kg of the bioresource fuel.											
10.	How can the same equation (Question-9) be used to determine the amount of excess air											CO4
	required for complete combustion?											
11.	The proximate and ultimate analyses results of some of the bioresources are given in											CO4
	the Table	e belov	v:		•						-	
	Biomass Proximate analysis					Ultimate analysis ^{daf}				References	1	
		Μ	VM db	FC ^{db}	A db	С	Η	Ν	S	0		1
	Pine chips	7.6	72.4	21.6	6	52.8	6.1	0.5	0.09	40.5	Masia (2007)	1
	Poplar	6.8	85.6	12.3	2.1	51.6	6.1	0.6	0.02	41.7	Miles et al. (1995)	1
	Sawdust	34.9	84.6	14.3	1.1	49.8	6	0.5	0.02	43.7	Tillman (2000)	
	Willow	10.1	82.5	15.9	1.6	49.8	6.1	0.6	0.06	43.4	Moilanen (2006)	ł
												ł
	db: Dry basis daf: Dry, ash-free basis, M:Moisture, VM: Volatile Matter, A: Ash, FC:Fixed Carbon Estimate the amount of air required for complete combustion, if 20% excess air is											
					-		-					
12.	supplied in each case. Also determine the composition of the flue gases.The ultimate analysis of rice husk is as follows:											CO4
	C - 39%, H_2 - 5%, O_2 - 32.7%, S - 0.1%, N_2 - 2.0%, H_2O - 3.6%, and ash - 17.6%										sh - 17.6%	
	The biomass is subjected to combustion for generation of heat energy. If the molecular weights of air and flue gas is assumed to be 29, estimate the actual air required and flue gas produced per kg of the bioresource, if 25% excess air is used for complete											
	combustion.											
CO1:			derstandi	ng of th	e hiore	Sources	and it	appli	rations	for at	tainment of social	ł
COI:	objectives								2010118	101 al	annicht of social	
CO2:									oresou	rces a	nd the conversion	
	Acquire knowledge with respect to the properties of the bioresources and the conversion technologies.											
CO3 :												
CO4 :	Understanding about analysis of data and their applications in design of the systems and											
	development of the bioprocess.											